
Edwards Thermodynamics for a Driven Athermal System with Dry Friction

Giacomo Gradenigo, Ezequiel E. Ferrero, Eric Bertin, and Jean-Louis Barrat
Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France

(Received 17 July 2015; published 30 September 2015)

We obtain, using semianalytical transfer operator techniques, the Edwards thermodynamics of a one-
dimensional model of blocks connected by harmonic springs and subjected to dry friction. The theory is
able to reproduce the linear divergence of the correlation length as a function of energy density observed in
direct numerical simulations of the model under tapping dynamics. We further characterize analytically this
divergence using a Gaussian approximation for the distribution of mechanically stable configurations, and
show that it is related to the existence of a peculiar infinite temperature critical point.
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Although systems governed by dissipative interactions
do not obey equilibrium statistical mechanics, there have
been several attempts to describe such systems with
effective equilibriumlike theories. A paradigmatic example
is the problem of amorphous packings of frictional grains,
for which an effective thermodynamic was proposed by
Edwards and co-workers [1–5]. This approach relies on the
basic assumption that all mechanically stable packings of
grains occupying the same volume have the same proba-
bility. This is expected if the system is repeatedly perturbed
with “extensive operations” [3], like a shaking of the grains
followed by a fast relaxation to a blocked (mechanically
stable) configuration. One can then build an effective
thermodynamics by determining all mechanically stable
configurations (MSCs) of the grains, and computing the
mean values of physical observables from flat averages
over accessible blocked configurations. The predicted
mean values can then be compared to dynamical averages
obtained from a given “tapping” protocol that samples
blocked configurations.
For athermal systems in which an energy is defined,

Edwards’ prescription can be formulated as follows [6].
One postulates the existence of an effective temperature
TEd ¼ β−1Ed such that the probability of a blocked configu-
ration C of energy EðCÞ takes the form

PðCÞ ¼ 1

Z
e−βEdEðCÞF ðCÞ; ð1Þ

where Z is a generalized partition function; F ðCÞ ¼ 1 if C
is a MSC and F ðCÞ ¼ 0 otherwise (only blocked configu-
rations have a nonzero probability). This constraint is non-
Hamiltonian, in the sense that it gives a zero probability to
(mechanically unstable) configurations having a finite
energy, whereas they would have a finite probability in
canonical equilibrium. At first sight, Eq. (1) looks like a
harmless generalization of equilibrium statistical mechan-
ics, by simply restricting the set of accessible configura-
tions. For instance, introducing an upper bound jxij < Xmax

on harmonic oscillators xi does not deeply affect their
statistical properties. However, the nontrivial point is that
the constraints arising from MSCs are often much more
complex than simply introducing a bound on individual
variables; in particular, the constraint of mechanical sta-
bility may itself introduce strong correlations in the system.
Notice that, beyond volume and energy, one may also take
into account other quantities when building an Edwards-
type thermodynamics [7–11] (e.g., the stress tensor).
Several attempts have been made to test the Edwards

scenario, not only in packings of grains, experimentally
[12–15] and numerically [16–20], but also in abstract
models like spin systems and lattice gases [21–26], and
in glass and spin-glass models [6,27–30]. Typically, one
uses a specific tapping protocol to sample blocked states,
and compares the dynamical average of the observables to
the thermodynamic averages obtained from Eq. (1).
Although it has been shown explicitly in some cases that
the Edwards approach is not exact [25,26], or that fluctua-
tions in specific blocked (or absorbing) states scale differ-
ently from what would be predicted by a thermodynamic
approach [31], Edwards thermodynamics is generally
believed to be a reasonably good description in many
cases [5]. The main difficulty with the Edwards measure
Eq. (1) is that the partition function Z, from which all
thermodynamic quantities can be derived, is very compli-
cated to compute due to the complexity of the function
F ðCÞ characterizing blocked states [32–36]. Standard
approaches are then either to consider abstract models
[21–26], which are far from any realistic system but simple
enough to allow for an explicit solution, or to resort to
mean-field [37] or more involved [32] approximations,
which still capture part of the interesting phenomenology,
but (at least partly) miss relevant information about spatial
correlations in the system.
In this Letter, we introduce a realistic model in which

Edwards thermodynamics can be computed exactly. We
investigate a one-dimensional model of frictional blocks
connected by harmonic springs, subjected to a tapping
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dynamics. Because of the one-dimensional geometry,
statistical properties can be computed semianalytically in
the thermodynamic limit using a transfer operator method.
Our numerical simulation and theoretical results lead both
to an infinite temperature critical point, with a correlation
length diverging linearly with the stored energy density—
directly measurable quantities in numerical simulations.
We analytically confirm these results using a Gaussian
approximation for the joint probability distribution of
spring elongations, and further characterize this critical
point in terms of the divergence of energy and length
fluctuations.
Simulations.—Our model is represented by a one-

dimensional chain of blocks of mass m connected by N
harmonic springs sliding on a horizontal plane [38–42].
Each particle is subjected to dry (Coulomb) friction. The
position of the ith mass is denoted as xi. When a block is
sliding it is subjected to a dissipative force proportional to
the dynamic friction coefficient, fi;diss ¼ −μdmgsgnð_xiÞ,
with g the gravitational constant. When at rest, it starts
moving when the applied force exceeds the static friction
force, jfij > mgμs. We fix μs to a constant value both
because we regard the blocks as macroscopic compared to
the asperities of the surface, and because it makes the
problem more tractable analytically. The elongation of the
ith spring is ξi ¼ xi − xi−1 − l0, with l0 the constant rest
length, so that the elastic force on each block reads
kðξiþ1 − ξiÞ, with k the spring stiffness. Taking into account
also an external force fexti , we have the following list of
dimensionless variables: ~t ¼ t=τ0, ~x ¼ x=ðgτ20Þ, ~fexti ¼
fexti =ðmgÞ, and ~l0 ¼ l0=ðgτ20Þ, with τ0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
. Dropping

the tildes, the dimensionless equation of motion reads

ẍi ¼ −μdsgnð_xiÞ þ xiþ1 þ xi−1 − 2xi þ fexti ; ð2Þ

with jξiþ1 − ξi þ fexti j > μs the condition to start motion.
We simulated a chain of N þ 1 ¼ 256 blocks with open
boundary conditions—see the Supplemental Material [43].
No finite size effects appeared, changing the size from 64 to
2048. The “blocked” configurations are those which, in the
absence of external force, are mechanically stable: ∀i,
_xi ¼ 0, and jξiþ1 − ξij < μs. We then define the following
tapping dynamics: the external forces fexti are switched on
in Eq. (2) and act during a given period of time τ, after
which they are switched off and the system relaxes to a
MSC. This procedure, which we call the driving cycle, is
repeated a large number of times to sample MSCs. At each
cycle, the forces fexti are drawn (randomly for each site i)
from a distribution

pðfexti Þ ¼ ð1 − ρÞδðfexti Þ þ ρffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−ðfexti −FÞ2=2σ2 : ð3Þ

A driving protocol is determined by fixing the parameters ρ
and σ. We studied two situations: pulling all blocks with a

random force (ρ ¼ 1, σ > 0) or pulling a fraction of them
with a constant force (ρ < 1, σ ¼ 0); see Fig. 1. This
“disordered” driving protocol is aimed at sampling effi-
ciently the MSCs. For a given protocol, one can then vary
the intensity F and duration τ of the driving. Each MSC is
characterized by the typical value of the energy stored by
the springs e ¼ ð1=2NÞPN

i¼1 ξ
2
i . For each tapping proto-

col, the average energy eðF; τÞ of the MSCs is found to
depend only on the product Fτ (see the Supplemental
Material [43]).
To characterize the MCSs we focus on the correlation

function Cðji − jjÞ ¼ hξiξji between the elongations of the
springs at position i and j in the chain. Since this function is
trivial [Cðji − jjÞ ¼ C0δij] in a thermal harmonic chain at
all temperatures, any appearance of correlations is a
signature of the unusual statistics associated with the non-
Hamiltonian constraints. Correlation functions Cðji − jjÞ
measured for different tapping protocols are shown in
Fig. 1. For a given tapping protocol we find that the extent
of correlations increases when the average energy of the
MSC increases. We extract the correlation length lðeÞ for
each case as the distance (i.e., number of springs) ji − jj at
which the measured correlation function decays below a
conventional threshold C� ¼ 0.2. The insets of Figs. 1(a),
1(b), and 1(c) show the collapse of the correlation function
when the x axis is rescaled with lðeÞ. Figure 1(d) shows,

(a)

(c) (d)

(b)

FIG. 1 (color online). (a),(b),(c) Correlation functions
Cðji − jjÞ for different tapping protocols, while in each panel
the different curves correspond to different energy values.
(a) F ∈ ½20; 128�, ρ ¼ 0.3, σ ¼ 0; (b) F ∈ ½20; 140�, ρ ¼ 0.8,
σ ¼ 0; (c) F ∈ ½20; 128�, ρ ¼ 1, σ ¼ F=4. τ ¼ 60 in all simu-
lations. Inset Cðji − jjÞ vs ji − jj=lðeÞ, showing a good collapse
of the different curves. (d) Correlation length lðeÞ as a function
of the energy density e of the MSC, for the different tapping
protocols shown in (a) diamonds, (b) circles, and (c) squares,
showing a linear increase lðeÞ ∝ e with a protocol-dependent
slope.
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for all protocols studied, the correlation length growing
linearly with the energy lðeÞ ∼ e; the higher the energy, the
more the system is correlated. This result may look
counterintuitive, since commonly the correlation length
decreases when energy increases. The key point is that for
large ξ (a situation typical of high energy MCS) the
frictional constraint jξiþ1 − ξij < μs imposes that ξiþ1

remains close to ξi. Therefore, correlations between spring
extensions build up in the MSC. By comparing the
correlation functions characterizing the blocked states
and those at the end of the driving phase (when the force
is switched off), we checked that correlations are not due to
the external driving, but come entirely from static friction
(see the Supplemental Material [43]). Despite the emer-
gence of correlations, we find that the distribution of spring
lengths is Gaussian at all energies; see Fig. 2.
Effective theory: Transfer operators.—Given that MSCs

are defined in our model by the constraint jξiþ1 − ξij < μs∀i, from Eq. (1) the probability of a configuration ξ ¼
ðξ1;…; ξNÞ reads

PðξÞ ¼ e−βEd
P

N
i¼1

ξ2i =2
YN
i¼1

Θðμs − jξiþ1 − ξijÞ: ð4Þ

All the properties of the system can be obtained from the
partition sum Z ¼ R

∞
−∞ dξ1…dξNPðξÞ. Using the change

of variables ξi ¼ μsξ
0
i, the partition function depends only

(up to an irrelevant prefactor) on the product βEdμ2s ; hence,
all thermodynamic quantities are functions of TEd=μ2s . We
consider periodic boundary conditions for the chain, with-
out imposing any constraint on its total length. For
convenience, we fix the rest length to l0 ¼ ∞, allowing
us to take as the domain of integration ξi ∈ ð−∞;∞Þ, while
avoiding crossings of masses.

Using Eq. (4), we have Z ¼ TrðT NÞ, with T an operator
defined as T ½f�ðxÞ ¼ R

∞
−∞ dyTðx; yÞfðxÞ, being Tðx; yÞ the

symmetric function:

Tðx; yÞ ¼ e−βEdx
2=4Θðμs − jx − yjÞe−βEdy2=4: ð5Þ

The operator T has a maximum positive eigenvalue
λmaxðβEd; μsÞ, which can be computed numerically discre-
tizing the domain of ξ, and using a complete orthonormal
basis in L2. All relevant thermodynamic observables
are computed in the same way (see the Supplemental
Material [43]). The free energy is obtained as f ¼
β−1Ed ln½λmaxðβEd; μsÞ� while the energy reads e ¼ ∂ðβEdfÞ=∂βEd ¼ −hλmaxj∂T =∂βEdjλmaxi=λmax. In the following, we
compare results from theory and simulations by tuning the
temperature TEd such that the energy e takes the same value
as in the numerics.
The behavior of energy as a function of TEd from the

transfer operator approach is shown in Fig. 3. We find two
regimes separated by a crossover that depends on μs: for
TEd ≪ μ2s there is an “equilibriumlike” regime where
e ∼ TEd while for TEd ≫ μ2s one finds e ∼

ffiffiffiffiffiffiffi
TEd

p
. The

transfer operator approach allows us to compute also the
probability distribution pðξÞ of the elongation of a single
spring (see the Supplemental Material [43]). The theoretical
result for pðξÞ is compared in Fig. 2 with the one estimated
numerically from the MCSs, showing good agreement. We
find that pðξÞ is Gaussian in all regimes, even when
correlations are present.

(a) (b)

FIG. 2 (color online). Distributions of springs elongations PðξÞ
at different temperatures, on a semi-log scale. Points represent
PðξÞ in MSCs sampled via tapping, full lines represent PðξÞ
obtained from Edwards theory, computed at the temperature TEd
yielding the same energy density e as the tapping. (a) Uncorre-
lated regime [lðeÞ < 1], where e ∼ TEd; TEd ¼ 0.0008 (blue
squares) and 0.0026 (orange circles). (b) Correlated regime
[lðeÞ > 1], where e ∼

ffiffiffiffiffiffiffiffi
TEd

p
; TEd ¼ 1.19 (orange circles) and

3.84 (blue squares).

FIG. 3 (color online). Energy density e of MSC as a function of
TEd, from transfer operators (small red diamonds) or Gaussian
approximation (full line), and as a function of dissipated energy
ediss for two tapping protocols: (i) ρ ¼ 0.3, σ ¼ 0 (orange
circles); (ii) ρ ¼ 1, σ > 0 (blue triangles). For TEd ≪ μ2 one
finds an equilibriumlike regime, e ∼ TEd; for TEd ≫ μ2 the
behavior is e ∼

ffiffiffiffiffiffiffiffi
TEd

p
. Top inset: Correlation length from exact

calculation (transfer operators); the behavior lðTEdÞ ∼
ffiffiffiffiffiffiffiffi
TEd

p
∼ e

is clear when TEd ≫ μ2. Bottom inset: Same symbols, data sets of
the main panel are collapsed by just rescaling the x axis; up to a
protocol-dependent prefactor we have ediss ∼ TEd.
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We also compute the correlation Cðji − jjÞ ¼ hξiξji,
which is very close to an exponential form for all values
of TEd, Cðji − jjÞ ∝ e−ji−jj=lðβEd;μÞ (see the Supplemental
Material [43]). When TEd ≫ μ2s both the correlation length
l and the energy e grow as

ffiffiffiffiffiffiffi
TEd

p
(see the inset of Fig. 3),

implying l ∼ e. We thus recover from Edwards thermo-
dynamics the scaling behavior of the correlation length
with energy observed in the simulated tapping dynamics.
This is a remarkable success of the Edwards approach for
this system. Conversely, there is almost no correlation
between neighboring springs (l < 1), in the equilibrium-
like low energy regime (e ∼ TEd).
We further show in the second inset of Fig. 3 that a direct

measure of TEd (within a protocol dependent factor) is
obtained from the dissipated energy per tapping cycle and
particle, ediss ¼ μdh

R
τ
0 sgn½_xiðtÞ�_xiðtÞdti. Indeed, in the

simulations ediss is found to have the same scaling with
e as the temperature obtained within the transfer operator
approach (i.e., e ∼ ediss if e ≪ μ2s , e ∼

ffiffiffiffiffiffiffiffi
ediss

p
if e ≫ μ2s).

The dissipated energy can therefore be interpreted as the
analog of the thermal energy that allows the system to
sample the configuration space [45].
Effective theory: Gaussian ansatz.—To obtain approxi-

mate analytical expressions for the thermodynamic quan-
tities, we replace the Heaviside function in Eq. (4) by a
Gaussian function,

Θðμs − jξiþ1 − ξijÞ →
1ffiffiffi
π

p exp

�
−
jξiþ1 − ξij2

4μ2s

�
; ð6Þ

yielding Z ∝
R
Dξe−SðξÞ with an effective Hamiltonian

SðξÞ ¼ 1

2

�
βEd

XN
i¼1

ξ2i þ
1

2μ2s

XN
i¼1

ðξiþ1 − ξiÞ2
�
: ð7Þ

This effective Hamiltonian corresponds to a positive
definite quadratic form SðξÞ ¼ 1

2
ξTAξ, where A is a

symmetric real Toeplitz matrix (see the Supplemental
Material [43]). The matrix A can be exactly diagonalized,
yielding analytical expressions for energy, entropy, corre-
lation function, and correlation length. The mean energy
per particle reads

eðTEd; μsÞ ¼
1

2

μsTEdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TEd þ μ2s

p ; ð8Þ

from which we recover that the crossover point between the
behaviors e ∼ TEd and e ∼

ffiffiffiffiffiffiffi
TEd

p
is T�

Ed ≈ μ2s . In Fig. 3,
Eq. (8) is compared with the result from the transfer
operator Eq. (5), showing a semiquantitative agreement.
We also find that the correlation function is hξiξji ∼
e−ji−jj=lðTEd;μsÞ with lðTEd; μsÞ such that l ∼

ffiffiffiffiffiffiffi
TEd

p
=μs in

the limit TEd ≫ μ2s . This result can be recovered from a
field-theoretic viewpoint, by taking a continuous limit in
Eq. (7), yielding

S½ξ� ∝
Z

dx

�
1

2

�∂ξ
∂x

�
2

þ 1

2
m2ξ2ðxÞ

�
ð9Þ

with a “mass” term m2 ¼ 2μ2sβEd. The correlation function
of such a Gaussian field theory is known [46] to be
hξðxÞξðyÞi ∼ e−mjx−yj, so that we recover a correlation
length l ∼ β−1=2Ed . This field-theoretic formulation confirms
the presence of an infinite temperature critical point, since
the mass term goes to zero at infinite temperature. To
inspect the critical exponents associated with this critical
point, we study the fluctuations of the total energy of the
chain, δE ¼ 1

2

P
N
i¼1ðξ2i − hξ2i iÞ and the fluctuations of its

total length, δL ¼ P
iξi. We find (see the Supplemental

Material [43]) that the variance of both energy and length
diverge linearly with temperature (or, equivalently, as l2),

h½δE�2i
N

∼
h½δL�2i

N
∼ TEd: ð10Þ

Finally, we compute the entropy density s ¼ −∂f=∂TEd.
We find that it saturates at high temperature to a finite value,
limTEd→∞sðTEd; μsÞ ¼ 1

2
ln 2þ ln μs. This saturation results

from the presence of long-range correlation at infinite
temperature. This can be confirmed by contrast, computing
the “mean-field” entropy density smf ¼ −

R
dξpðξÞ lnpðξÞ,

with pðξÞ the distribution of a single spring elongation ξ.
We find that smf, which discards correlations, diverges like
lnTEd at infinite temperature (see the Supplemental
Material [43]), at odds with the saturation of the entropy s.
Conclusions.—The present study provides a clear-cut

example of how an effective thermodynamic theory can
successfully describe an athermal dissipative system. We
believe that an important ingredient for the Edwards theory
to hold is that the entropy of blocked states is extensive, as
it holds in our case. The most remarkable difference
between standard equilibrium thermodynamics and the
effective theory we have presented is the presence of an
infinite temperature critical point, with an associated
divergence of the correlation length as l ∼ T1=2

Ed (or
l ∼ e). As seen in the field-theoretic formulation of
Eq. (9), this infinite temperature critical point results from
the long-range correlation generated by static friction in the
blocked states. The difference with standard equilibrium
systems is that the gradient term in the effective
Hamiltonian does not come from an energetic interaction,
but from a non-Hamiltonian constraint. Its coefficient is
strictly temperature independent, while the coefficient of
the energetic term scales inversely with temperature. While
temperature-independent terms could also be present at
equilibrium (e.g., entropic constraints such as excluded
volume), they are usually purely local and do not involve
gradient terms. Hence, in spite of its simplicity, our model
exhibits a phenomenology clearly distinct from that of
equilibrium systems, and the field-theoretic formulation
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suggests that the results should be quite robust to changes
in the details of the model. Future work should investigate
this issue in more detail.
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